
 Document Generated: 07/27/2024

Learning Style: Virtual Classroom

Provider:

Difficulty: Beginner

Course Duration: 5 Days

Mastering React | React, Redux, JSX, Flux, Forms,
Unit Testing & More (TTSREACT3)

Page 1/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

About this course:

Mastering React is a Five-days, in-depth hands-on training program aimed at
becoming the single most valuable tool for getting started with Respond quickly.
This training is built for more professional web Developers and gives learners the
key skills and hands-on experience they need to create secure, efficient React
apps.

You will have a good knowledge of the basics of React after the first few modules,
and will also be able to create a large variety of beautiful, immersive web
applications with the framework. Topics such as client-side routing between sites,
complex state management, and strong on-scale application program interface
interaction are also addressed. In a progressive, example-driven method we cover
all of the fundamentals. You can build your first software, discover how components
can be written, and start managing user interaction. We will also discuss the internal
workings of Build React App (Facebook's software to run React applications), write
automated unit testing, and develop a multi-page application that utilizes routing on
the client-side.

The above part of this training is moving into more advanced principles that you can
see used in broad apps for growth. Both principles address data infrastructure,
storage, and management strategies: Redux is a state management model based
on the Flux infrastructure from Facebook. Redux offers a framework for huge state
trees and lets you decouple client interaction from state changes in your device.

The React Js Developer can earn an average salary of $112,250 per annum.

Course Objective:

Working within a focused, hands-on training framework, learners should able to:

How to create and Install first React component
Using React to handle User Interface elements, react to user feedback and
build a state of the art components
Comprehend the FLUX structure and use FLUX with react to construct an
app
Discover methods to test the Code for ReactJS
Understand the fundamentals of ReactJS by taking an overview
Using some main lifecycle events to incorporate and learn about ES6
syntaxes in the reaction environment
Consider a system reusable with validation aids and appropriately organize
the components
Use JSX to Refactor the ReactJS component
Use webpack to deploy your code

Audience:

It is an introductory-level online training program for web.dev who want to

Page 2/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

further improve their expertise in modern web development. To excel in this
class

Prerequisite:

Participants are expected to have up-to-date, hands-on, solid web app
development experience, and to be versed in critical JavaScript, CSS3, and
HTML5.

Course Outline:

Module 1: Your first React Web Application

Building Product Hunt
Setting up your development environment

Code editor
Node.js and npm
Install Git
Browser

Special instruction for Windows users
Ensure IIS is installed

JavaScript ES6/ES7
Getting started

Sample Code
Previewing the application
Prepare the app

What’s a component?
Our first component
JSX
The developer console
Babel
ReactDOM.render()

Building Product
Making Product data-driven

The data model
Using props
Rendering multiple products

React the vote (your app’s first interaction)
Propagating the event
Binding custom component methods
Using state
Setting state with this.setState()

Updating state and immutability
Refactoring with the Babel plugin transform-class-properties

Babel plugins and presets
Property initializers
Refactoring Product
Refactoring ProductList

Module 2: Components

Page 3/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

A time-logging app
1. Getting started

Previewing the app
Prepare the app

Breaking the app into components
The steps for building React apps from scratch
Step 2: Build a static version of the app

TimersDashboard
EditableTimer
TimerForm
ToggleableTimerForm
Timer
Render the app

Step 3: Determine what should be stateful
State criteria
Applying the criteria

Step 4: Determine in which component each piece of state should live
The list of timers and properties of each timer
Whether or not the edit form of a timer is open
Visibility of the create form

Step 5: Hard-code initial states
Adding state to TimersDashboard
Receiving props in EditableTimerList
Props vs. state
Adding state to EditableTimer
Timer remains stateless
Adding state to ToggleableTimerForm
Adding state to TimerForm

Step 6: Add inverse data flow
TimerForm
ToggleableTimerForm
TimersDashboard

Updating timers
Adding editability to Timer
Updating EditableTimer
Updating EditableTimerList
Defining onEditFormSubmit() in TimersDashboard

Deleting timers
Adding the event handler to Timer
Routing through EditableTimer
Routing through EditableTimerList
Implementing the delete function in TimersDashboard

Adding timing functionality.
Adding a forceUpdate() interval to Timer

Add start and stop functionality
Add timer action events to Timer
Create TimerActionButton
Run the events through EditableTimer and EditableTimerList

Methodology review

Page 4/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

Module 3: JSX and the Virtual DOM

React Uses a Virtual DOM
Why Not Modify the Actual DOM?
What is a Virtual DOM?
Virtual DOM Pieces
ReactElement

Experimenting with ReactElement
Rendering Our ReactElement
Adding Text (with children)
ReactDOM.render()

JSX
JSX Creates Elements
JSX Attribute Expressions
JSX Conditional Child Expressions
JSX Boolean Attributes
JSX Comments
JSX Spread Syntax
JSX Gotchas
JSX Summary

Module 4: Advanced Component Configuration with props, state, and children

Intro
How to use this chapter
ReactComponent

Creating ReactComponents - createReactClass or ES6 Classes
render() Returns a ReactElement Tree
Getting Data into render()

props are the parameters
PropTypes
Default props with getDefaultProps()
context
state

Using state: Building a Custom Radio Button
Stateful components
State updates that depend on the current state
Thinking About State

Stateless Components
Switching to Stateless
Stateless Encourages Reuse

Talking to Children Components with props.children
React.Children.map() & React.Children.forEach()
React.Children.toArray()

Module 5: Forms

Forms 101
Preparation
The Basic Button.

Page 5/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

Events and Event Handlers
Back to the Button

Text Input
Accessing User Input With refs .
Using User Input.
Uncontrolled vs. Controlled Components
Accessing User Input With state
Multiple Fields
On Validation
Adding Validation to Our App.
Creating the Field Component
Using our new Field Component

Remote Data.
Building the Custom Component
Adding CourseSelect .
Separation of View and State.

Async Persistence .
Redux .
Form Component.

Connect the Store.
Form Modules
formsy-react .

react-input-enhancements
tcomb-form
winterfell
react-redux-form.

Module 6: Unit Testing.

Writing tests without a framework .
Preparing Modash.
Writing the first spec .
The assertEqual() function.

What is Jest?.
Using Jest.

expect().
The first Jest test for Modash.
The other truncate() spec
The rest of the specs

Testing strategies for React applications.
Integration vs Unit Testing.
Shallow rendering
Enzyme

Testing a basic React component with Enzyme
Setup.
The App component
The first spec for App .
More assertions for App
Using beforeEach
Simulating a change .

Page 6/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

Clearing the input field
Simulating a form submission

Writing tests for the food lookup app
FoodSearch
Exploring FoodSearch

Writing FoodSearch.test.js
In initial state
A user has typed a value into the search field
Mocking with Jest
Mocking Client.
The API returns results
The user clicks on a food item
The API returns empty result set

Module 7: Routing

What’s in a URL?
React Router’s core components .

Building the components of react-router.
The completed app
Building Route
Building Link .
Building Router
Building Redirect
Using react-router
More Route
Using Switch .

Dynamic routing with React Router
The completed app
The server’s API.
Starting point of the app.
Using URL params
Propagating pathnames as props
Dynamic menu items with NavLink.

Supporting authenticated routes
The Client library
Implementing login
PrivateRoute, a higher-order component.
Redirect state .

Module 8: Intro to Flux and Redux

Why Flux?
Flux is a Design Pattern.
Flux overview .

Flux implementations
Redux .
Building a counter

Preparation
Overview.

Page 7/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

The counter’s actions .
Incrementing the counter
Decrementing the counter
Supporting additional parameters on actions

Building the store
The core of Redux
The beginnings of a chat app

Previewing
State
Actions

Building the reducer() .
Initializing state.
Handling the ADD_MESSAGE action
Handling the DELETE_MESSAGE action

Subscribing to the store .
createStore() in full

Connecting Redux to React.
Using store.getState().
Using store.subscribe()
Using store.dispatch().
The app’s components
Preparing App.js.
The App component
The MessageInput component
The MessageView component

Module 9: Intermediate Redux .

Preparation
Using createStore() from the redux library .
Representing messages as objects in state.

Updating ADD_MESSAGE
Updating DELETE_MESSAGE
Updating the React components .

Introducing threads.
Supporting threads in initialState
Supporting threads in the React components
Modifying App
Turning MessageView into Thread

Adding the ThreadTabs component .
Updating App .
Creating ThreadTabs .

Supporting threads in the reducer
Updating ADD_MESSAGE in the reducer
Updating the MessageInput component.
Updating DELETE_MESSAGE in the reducer

Adding the action OPEN_THREAD.
The action object.
Modifying the reducer
Dispatching from ThreadTabs

Page 8/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

Breaking up the reducer function.
A new reducer()
Updating threadsReducer().

Adding messagesReducer().
Modifying the ADD_MESSAGE action handler .
Creating messagesReducer()
Modifying the DELETE_MESSAGE action handler
Adding DELETE_MESSAGE to messagesReducer().

Defining the initial state in the reducers
Initial state in reducer().
Adding initial state to activeThreadIdReducer().
Adding initial state to threadsReducer()

Using combineReducers() from redux.

Module 10: Using Presentational and Container Components with Redux

Presentational and container components.
Splitting up ThreadTabs
Splitting up Thread
Removing store from App
Generating containers with react-redux

The Provider component.
Wrapping App in Provider.
Using connect() to generate ThreadTabs
Using connect() to generate ThreadDisplay

Action creators

Module 11: (OPTIONAL) Working with React Native.

Init
Routing
<Navigator />

renderScene()
configureScene()

Web components vs. Native components
<View />.
<Text />.
<Image />.
<TextInput />
<TouchableHighlight />, <TouchableOpacity />, and
<TouchableWithoutFeedback/>
<ActivityIndicator />.
<WebView /> .
<ScrollView />.
<ListView /> .

Styles .
StyleSheet.
Flexbox

HTTP requests
What is a promise

Page 9/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

Enter Promises
Single-use guarantee.
Creating a promise
Debugging with React Native

Credly Badge:

 Display your Completion Badge And Get The
Recognition You Deserve.

Add a completion and readiness badge to your
Linkedin profile, Facebook page, or Twitter account to
validate your professional and technical expertise. With
badges issued and validated by Credly, you can:

Let anyone verify your completion and
achievement by clicking on the badge
Display your hard work and validate your
expertise
Display each badge's details about specific
skills you developed.

Badges are issued by QuickStart and verified through
Credly.

 Find Out More or See List Of Badges

Powered by TCPDF (www.tcpdf.org)

Page 10/10 https://www.quickstart.com/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.html

https://www.credly.com/org/quickstart/badge/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.1
https://www.credly.com/org/quickstart/badge/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.1
https://www.credly.com/org/quickstart/badge/mastering-react-react-redux-jsx-flux-forms-unit-testing-more-ttsreact3.1
https://www.quickstart.com/completion-badges
https://www.credly.com/organizations/quickstart/badges
http://www.tcpdf.org

